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1 Review of last tutorial

In tutorial 2, we review the definition of compactness.

Definition 1.1. A subset S of R" is called compact if it satisfies any of the
following equivalent conditions.

(i) S is closed and bounded.

(ii) Any sequence (z,) of S has a converging subsequence, i.e. there exists a
subsequence (z,, ) and = € S so that limy 2, = «.

(iii) Any open cover of S has a finite subcover, i.e, If U,’s are open, and
S C UyU,, then we can cover S using only finitely many U, : S C
Uy, UUy, U---UU,,.

Remark 1.2. Later in this course when you will learn compactness for more
general spaces, you will find the above condition may no longer be equivalent.
Condition 3 is the most general one.

Next we discuss about the conditions of Lipschitz.

Definition 1.3. Let f : [0,1] — R be a function, and x € [0,1]. We have the
following conditions:

(i) We say that f is Lipschitz (continuous) at z if there exist 6 > 0 and L > 0
such that

|f(y) — f(2)] < L]y — 2|

whenever y € [0,1] and |y — x| < 4.

(ii) We say that f is locally Lipschitz (continuous) at x if there exist § > 0
and L > 0 such that

|f(y) = f(2)| < Lly — |

whenever y,z € [0,1] and |y — z|, |z — z| <.



(iii) We say that f is uniformly Lipschitz (continuous) on [0, 1] if there exist
0 >0 and L > 0 such that

[f(y) = F(2)] < Lly — 2|
whenever z,y € [0,1] and |z — y| < 4.
Remark 1.4.

(i) If f is bounded, then the condition |y—x| < 4 is not necessary in definition
(i) and (iii)

(ii) Inlecture 4, one can find the definition that f satisfies a Lipschitz condition
on [0, 1], this is equivalent to the condition in (iii)4+ boundedness of f.

It is clear that

uniform Lipschitz = locally Lipschitz everywhere = Lipschitz everywhere

In last tutorial, we show that locally Lipschitze everywhere = wuniform Lipschitz
on compact sets. The proof is similar to the proof that continuous —
uniform continuous on compact sets.

However, the last condition is not equivalent to the previous one, even on com-
pact sets.

Example 1.5. The function

{szo
~ ) zsin(1/z),z € (0,1]

is Lipschitz at every point. It is a simple exercise to see f is Lipschitz at x # 0
(using derivatives!). To see f is Lipschitz at = 0, note that |f(y) — f(0)| =
y|sin(1/y)| < |y—0|. It remains to see that f is not uniformly Lipschitz. In fact,
let z,, = 1/(n7r—|—%7r)7 Yn = 1/(n7r—%7r), we have |f(2,)— f(yn)|/|Tn—yn| = 2n.

Finally, we see that if f is differentiable (on (0,1)) with bounded derivative,
then f is uniformly Lipschitz. On the other hand, if f is uniformly Lipschitz
and differentiable, then f’ is bounded. However, the function in Example 1.5
also provides an example of a differentiable function, Lipschitz at every point
of [0, 1], with unbounded derivative.

2 Answers of Last Tutorial’s question
(a) If f is differentiable and f’ is bounded on [0, 1], then f is uniform Lipschitz

on [0,1]
Ans:True.



(b)

()

If is Lipschitz on [0, 1], and f is differentiable, then f is bounded on [0, 1].
Ans: False, a counter example is z sin 1

The function f(x) = 22 is uniformly Lipschitz on [0, 1].
Ans: True.

There exists no integrable functions f on [—7, 7] so that
o0
f~ Z sinnzx.
n=1

True, by Riemann Lebesgue Lemma.

There exists no integrable functions f on [—m, 7] so that

1
f~ Zﬁcosnaﬁ.

n=1

Ans:True, by Parseval identity.

Let f, — f on [0,1] in L? sense, then f,(x) — f(x) for some x € [0, 1].
Ans: False, we will discuss it in the tutorial.

If Y07 cpe™® converges uniformly (i.e. the partial sum sy = 2527 N
converges uniformly), then > °7 _ |c,|? < .
Ans: True.

IEY 0 len]® < oo, then Y07 ¢,e™* converges uniformly.
False, if ¢, = 1/n, then the series diverges for = 0.

00 inx
C

Let ¢, = cn(f) for some function f integrable on [—m, 7], then "~ cpe

converges for almost all = € [—7, 7).
This is true for Riemann integrable functions (but the proof is hard), but
incorrect for Lebesgue integrable functions, just forget about this question.

Let f be a 27 periodic continuous, suppose ¢, (f) = 0 for all n. Then f is
the zero function.
Ans: True, using Weierstrass approximation theorem.

Question: Let 0 < 6 < 7, and define the 27 periodic function f by

(a)

0, if 6 < [z] < [n]

Fa) = {1, if |z < 6

Compute the Fourier coefficients of f.
Ans:ag = /7, a, = 2sinnd/nm, b, = 0.



(b)

Show that

isinné_w—&
n 2

n=1

Ans: Evaluate at 0.

Show that
i sin? nd _m=0
— n2s 2

Ans: Use Parseval’s identity. (You can check both sides agree when 6 —

0.)
® fsing\? T
/ ( > der = —
0 X 2

Ans: Using definition of Riemann sum.

Show that

Questions for this tutorial

. True or false

(a) If f is integrable on [0, 1], then f2 is integrable on [0, 1].
(b) If £2 is integrable on [0, 1], then f is integrable on [0, 1].

(c) If 2 is integrable on [0, 1], then |f| is integrable on [0, 1].

(d) If f is non-negative and continuous on (0, 1], and fol f exists as an
. . 1 .9 . . .

improper integral, then fo f* exists as an improper integral.

(e) If f is non-negative and continuous on (0, 1], and fol f? exists as an

improper integral, then fol f exists as an improper integral.

. Let f be a function on (—m, =], which is integrable on [a,n] for any

a € (—m,m], and that lim., f: f exists, show that Riemann Lebesgue
lemma holds.

. If f is uniformly Lipschitz and 27 periodic, show that ¢, (f) = O(1/n).
. Show that -
x cos
—log|2sin =] ~
og |2 sin 2| ; -

Hints: foﬁ logsin § = —7 log 2.



